

 TECHNICAL UNIVERSITY OF CLUJ-NAPOCA

 ACTA TECHNICA NAPOCENSIS

 Series: Applied Mathematics and Mechanics

 53, Vol. III, 2010

Programming AutoCAD using Jawin from Java in JDeveloper

ANTAL Tiberiu Alexandru

Abstract: The paper gives a free solution that can be used to program AutoCAD from Java based on the
“Jawin - a Java/Win32 interoperability project” and using the JDeveloper programming environment.
The main data types and methods used to create AutoCAD entities from Java are described using
examples together with the steps to open such a project under JDeveloper.
Key words: Java, AutoCAD, Ole32, JDeveloper.

1. INTRODUCTION

AutoCAD is an application that can be
easily programmed using the VB or VBA
programming languages based on the ActiveX
technology. The idea of this article is to
program AutoCAD from Java by exploiting the
compatibilities of the ActiveX object model. At
the Autodesk’s Developer Center, the
Questions and Answers section [3] is written
that “Autodesk does not directly support
application development using Delphi or
Microsoft J++ language tools. However, the
AutoCAD ActiveX® object model should be
compatible, and if Java or Delphi is your
development environment choice, you can use
it”. Jawin [4] is a free integration project, open
source architecture for interoperation between
Java and components exposed through
Microsoft's Component Object Model (COM)
or through Win32 Dynamic Link Libraries
(DLLs). This project can be used with success
to connect Java and AutoCAD with the help of
JDeveloper, the Oracle’s Java development
tool. This is a Java application that contains
code that will use code written in another
language, which is called usually native code.
To make possible the calling of the native code
Java is linked to the system libraries. The usage
of native code has however the price of
portability loss. The Java Native Interface (JNI)
was used from Java 1.0 as a standard way to

access native code from the Java platform. JNI
provides a set of low-level primitives that can
be used to pass arguments from Java into native
code, and vice versa. During the development
process JNI requires the programmer to write
custom native code each time new capabilities
must be added. The main advantage of Jawin is
that all the native code is in Jawin.dll and no
additional native code needs to be written. This
way the programmer can concentrate on his
personal development problems instead of
implementing custom native code. Also, Jawin
is already structured and the programmer
doesn’t need advanced JNI and COM
knowledge in order to use it in his applications.
In short, we have higher productivity with less
knowledge.

2. INSTALLATION OF Jawin AND
JDeveloper CONFIGURATON

At [4] the “Binary and source releases” link
will be used to download the Jawin files. The
jawin-2.0-alpha1.zip compressed file is
organized on directories; the latest build is
2005-03-23 and requires JDK 1.3 or newer.
Decompressing the file will create the jawin-
2.0-alpha1 directory that will contain most of
the files needed to start the development. In
JDeveloper create a new application, then a
new project and then, from the Project
Properties, at Libraries and Classpath, add

(using the Add JAR/Directory… button) the
contents of the lib directory (jawin.jar and

jawin-stubs.jar) to the project (see Figure 1).

Fig. 1. Configuration of the JDeveloper project to work with Jawin.

3. CONNECTING FROM Java TO
AutoCAD USING Jawin

The link with Java is based on the ActiveX

(COM automation) interface implemented in
the AutoCAD software. This link can be made
by instantiating a new AutoCAD session or by
connecting to an already opened AutoCAD
instance session.

The following Java code will start a new
AutoCAD instance, if no such instance running
or it will link to an existing AutoCAD instance:

import org.jawin.COMException;
import org.jawin.DispatchPtr;
import org.jawin.IUnknown;
import org.jawin.Variant;
import org.jawin.win32.Ole32;

try {
 Ole32.CoInitialize();
 IUnknown iunk = null;
 try {
 iunk =
OleAut32.GetActiveObject("AutoCAD.Appl
ication.17");
 } catch (COMException ex) {

 if (MK_E_UNAVAILABLE !=
ex.hresult) {
 throw ex;
 } //end if
 } // end catch
 DispatchPtr app = null;

 // did we get a running instance?
 if (null != iunk) {
 // retrieve the dispatch interface
 app =
(DispatchPtr)iunk.queryInterface
(DispatchPtr.class);
 } else {
 // create a new instance
 app = new
DispatchPtr("AutoCAD.Application.17");
 } //end else

 . . .

Ole32.CoUninitialize();
} catch (Exception e) {
 e.printStackTrace();
}

Because COM requires that all threads

calling a COM object must initialize the COM
library before making any COM calls, this is

done by calling Ole32.CoInitialize(). After
a thread is finished with all COM calls, it
should call Ole32.CoUninitialize(). The
DispatchPtr is created directly, using the
ProgId for the COM class you want to use (the
name DispatchPtr comes from the fact that
scriptable COM components implement the
IDispatch interface). In order to gain access to
AutoCAD from the thread we are in a COMPtr
called DispatchPtr is used. This will also
allow access to any subclass (methods and
accessors) of the AutoCAD object model
hierarchy. At the end of the application must
call the close() method, which will release the
underlying IUnknown*. If we want to find an
opened AutoCAD instance and get a link to it
things are a bit more complicated. I will only
explain the process. First we need the source
code Ole32.java, here we have to make a
small adjustment and make the
CLSIDFromProgID() called from
GetActiveObject() a public method. I
decided to keep the original Ole32.java and
make a Ole32V1.java where I make the
necessary adjustment. The code is not specific
to AutoCAD and one implementation could be:

public static IUnknown
GetActiveObject(String progID) throws
COMException {
 try {
 // CLSIDFromProgID in orig. version
of Ole32.java is private and must be
public)
 GUID clsid =
Ole32V1.CLSIDFromProgID(progID);
 Ole32V1.CoCreateInstance(clsid,
Ole32V1.CLSCTX_ALL,
WellKnownGUIDs.IID_IUnknown);

 NakedByteStream nbs = new
NakedByteStream();
 LittleEndianOutputStream baos =
new LittleEndianOutputStream(nbs);
 clsid.marshal(baos, null);
 byte[] result =
funcGetActiveObject.invoke(instrGetAct
iveObject, stackSizeGetActiveObject,
nbs, null, ReturnFlags.CHECK_HRESULT);

 return
(IUnknown)IdentityManager.getCOMPtr(re
sult, 0, WellKnownGUIDs.IID_IUnknown);
 } catch (IOException ioe) {
 throw new COMException(ioe);
 }

 }

Then, we can check if an AutoCAD instance

is running (the ProgID is in this case
"AutoCAD.Application.17") by calling the
GetActiveObject() method. For both cases
the app variable of DispatchPtr type will hold
a reference to the instance. This app variable
will be used further to interact with AutoCAD.

4. PROGRAMMING AutoCAD FROM Java
USING Jawin

In order see the effects of the Java code

while programming the put() method is used
to make AutoCAD window visible on the
screen. put() will be used to set any property
of AutoCAD and has the following syntax:

public void put(String prop, int val)
throws COMException;

Then, the get() method is used to find the

model space (ms) of the current document (doc)
in order to start the programming of the
drawing process.

app.put("Visible", true);
DispatchPtr doc =
(DispatchPtr)app.get("ActiveDocument")
;
DispatchPtr ms =
(DispatchPtr)doc.get("ModelSpace");

get() is a getter method that allows reading of
the AutoCAD properties having the syntax:

public Object get(String prop) throws
COMException;

The process of drawing an AutoCAD entity has
two steps, first we must prepare the data, and
then we must invoke the desired method. In the
following example a line will be added to the
model space. The AddLine() method is used
from VBA to create a line in the model space.
Two arrays must be used to specify the start
point and the end point. The start point
declaration array would look in VBA like Dim
sp(0 To 2) As Double while in Java the
equivalent code is: double[] sp = new
double[3];

This however is not enough to pass the
parameter to an AutoCAD method as the
representation of data in Java and VBA are not
the same. The Jawin
org.jawin.Variant.ByrefHolder class (the
name originates from the term passing by
reference instead of the usual by value) has a
ByrefHolder wrapping object that must be
used, as in the following code, in order to
succeed:

double[] sp = new double[3];
double[] ep = new double[3];

//start point
sp[0] = sp[1] = sp[2] = 0;

//end point
ep[0] = 1;
ep[1] = ep[2] = 3;

//create a 2D line
Variant.ByrefHolder p1 = new
Variant.ByrefHolder(sp);
Variant.ByrefHolder p2 = new
Variant.ByrefHolder(ep);
DispatchPtr linie =
(DispatchPtr)ms.invoke("AddLine", p1,
p2);

//create a circle
double raza = 0.5;
Variant.ByrefHolder r = new
Variant.ByrefHolder(raza);
DispatchPtr cerc =
(DispatchPtr)ms.invoke("AddCircle",
p2, r);

Two ByrefHolder objects, p1 and p2 are

created based on the sp and ep Java array
variables. The ms object is used to invoke DLL
functions with the help of the invoke()
methods. The use of ByrefHolder is
compulsory even if the Java variable types are
primitives. This case is shown for a circle,
where the radius is a just a double primitive
but still has to be passed as a ByrefHolder
object.

One of the common programming tasks is
the calling of AutoCAD commands directly
from Java. We could solve the same problem
with the help of the special API methods, still
some things will be written faster this way. The
following example will use SendCommand from
the COM document object in order to call the
regen and zoom AutoCAD commands.

//calling AutoCAD commands
doc.invoke("SendCommand", "_regen ");
doc.invoke("SendCommand", "_zoom e ");

The following example (see Figure 2) is going
to create a 3DPolyline in two ways. In the first
case the points are known and stored into an
array and in the second case the points are
computed based on an arithmetic expression
(spiral equations).

//3DPoly – first case
//4 points, 3 coordinates per point
double[] pl = new double[12];

//first point
pl[0] = 0; //x
pl[1] = 0; //y
pl[2] = 0; //z

//second point
pl[3] = 1;
pl[4] = 1;
pl[5] = 10;

//third point
pl[6] = 2;
pl[7] = 3;
pl[8] = 4;

//fourth point
pl[9] = 7;
pl[10] = 6;
pl[11] = -5;

//prepare the data
Variant.ByrefHolder plp = new
Variant.ByrefHolder(pl);
//and draw it
DispatchPtr pline =
(DispatchPtr)ms.invoke("Add3DPoly",
plp);

//3DPoly – second case
//i - counts the point
//n – number of the points
//3*n because each point
// needs 3 coordinates

int i=0, n = (int)(2*Math.PI/0.1)+1;
double[] spiral = new double[3*n];

for(double t=0;t<2*Math.PI;t+=0.1) {
 spiral[i]=Math.cos(6*t);
 spiral[i+1]=Math.sin(6*t);
 spiral[i+2] =t;
 i+=3;
}

Variant.ByrefHolder pspiral = new
Variant.ByrefHolder(spiral);

DispatchPtr pline1 =
(DispatchPtr)ms.invoke("Add3DPoly",
pspiral);

Fig. 2. The AutoCAD entities created from the Java based on Jawin.

Variant.ByrefHolder p3dm = new
Variant.ByrefHolder(p3m);

The following example (see Figure 2) is going
to create a 3DMesh in two ways. In the first case
the points are known and stored into an array,
while in the second case the points are
computed based on an arithmetic expression.
The (x, y, z) coordinates for each point of the
3DMesh are stored in three consecutive vector
elements (mesh[c], mesh[c+1], mesh[c+2]).
The x0=0, y0=3 are just an offset that will
“delay” in space the entities so they would not
overlap. Two for cycles are used to compute
each coordinate of the points from the 3DMesh

based on the)sin(22 yxz expression.

DispatchPtr d3mesh =
(DispatchPtr)ms.invoke("Add3DMesh", 4,
4, p3dm);

//3Dmesh – second case
//u*v points
//z=sin(sqrt(x^2+y^2)

int u=50, v=30, c=0;
double[] mesh = new double[3*u*v];
double x, y, x0=0, y0=3;
for (i=0; i < u; ++i) {
 x=0.25*i;
 for (int j=0;j<v;++j) {
 y=0.25*j;
 mesh[c]=x0+x;

 mesh[c+1]=y0+y;

mesh[c+2]=Math.sin(Math.sqrt(x*x+y*y))
;

//3Dmesh – first case
//16 points, 3 coordinates per point

 c+=3; double[] p3m = { 0, 0, 0, 2, 0, 1, 4,
0, 0, 6, 0, 1, 0, 2, 0, 2, 2, 1, 4, 2,
0, 6, 2, 1, 0, 4, 0, 2, 4, 1, 4, 4, 0,
6, 4, 0, 0, 6, 0, 2, 6, 1, 4, 6, 0, 6,
6, 0 };

 }
}

Variant.ByrefHolder vecmesh = new
Variant.ByrefHolder(mesh);

DispatchPtr obvecmesh =
(DispatchPtr)ms.invoke("Add3DMesh", u,
v, vecmesh);

Another common programming task is reading
the characteristics of some entities from
AutoCAD. The following code is reading the
start point (lsp) and the end point (lep) of the
line drawn before. Then, the application is
stopped and the user can switch to AutoCAD
where it can modify the start point of the line.
The new coordinates will be then printed along
with the initial ones.

//read the line start (lsp) and end
(lep) points
double[] lep = (double[])
linie.get("EndPoint");
double[] lsp = (double[])
linie.get("StartPoint");

//print the values
System.out.println("Line Start
point:("+lsp[0] + ", " + lsp[1]+ ", "
+ lsp[2]+")");
System.out.println("Line End
point:("+lep[0] + ", " + lep[1]+ ", "
+ lep[2]+")");

//prepare to stop the application
int indata;
Scanner in = new Scanner(System.in);

// Reads an integer from the console
and stores into the indata variable
//to stop the application
indata = in.nextInt();
in.close();

//update the changes
linie.invoke("Update");

//read the changes
double[] newlsp =
(double[])linie.get("StartPoint");
System.out.println("Line Start
point:("+newlsp[0] + ", " + newlsp[1]+
", " + newlsp[2]+")");

5. CONCLUSIONS

The Jawin allows programming of AutoCAD
from Java. The programmer must have decent
knowledge about AutoCAD and the ActiveX
technologies and good programming skills
under Java.

6. REFERENCES

 [1] Antal Tiberiu Alexandru, “Visual BASIC

pentru ingineri”, RISOPRINT, Cluj-Napoca,
2003, p. 244, ISBN: 973-656-514-9.

 [2] Tiuca, T., Precup, T., Antal, T. A.,
“Dezvoltarea aplicatiilor cu AutoCAD si
AutoLISP”, Ed. PROMEDIA, 1995, p. 303,
ISBN: 973-96862-2-2.

 [3] http://usa.autodesk.com/adsk/servlet/item?
siteID=123112&id=770204, Accessed at
4/9/2010 11:57 AM.

 [4] http://jawinproject.sourceforge.net/,
Accessed at 4/9/2010 12:02 PM.

 [5] http://www.koders.com/java/
fidA79D342745C88031CF506FC3CAA655
0E8A9A787B.aspx?s=%22Stuart+Halloway
%22#L22, Accessed at 4/10/2010 12:56 PM.

PROGRAMAREA AutoCAD-ului DIN Java FOLOSIND Jawin UTILIZAND MEDIUL JDeveloper

Lucrarea prezinta o solutie gratuita care se poate utiliza pentru programarea AutoCAD-ului, din limbajul Java, ce are la
baza proiectul de interoperabilite “Jawin”. Prin exemple se arata structurile de date si metodele ce se utilizeaza pentru
crearea entitatilor AutoCAD impreuna cu etapele pornirii unui astfel de proiect de sub mediul de programare
JDeveloper.

ANTAL Tiberiu Alexandru, Associate Professor, dr. eng., Technical University of Cluj-Napoca,
Department of Mechanics and Computer Programming, antaljr@bavaria.utcluj.ro, 0264-401667,
B-dul Muncii, Nr. 103-105, Cluj-Napoca, ROMANIA.

mailto:antaljr@bavaria.utcluj.ro

